Converter 1.5V - 3V

 O schemă simplă de generare a tensiunii invertorului de la 1,5V la 3V poate fi realizată pe baza binecunoscutului multivibrator ușor modificat. Sub aceste denumiri, schema convertorului de frecvență este de aproximativ 130 kHz. Valoarea inductanței poate fi calculată sau aleasă experimental. Dar puteți regla pur și simplu frecvența convertorului pentru a produce tensiunea maximă de ieșire. Dioda Schottky VD1 poate fi înlocuită cu orice alte caracteristici similare.

Pentru stabilizarea suplimentară a tensiunii de ieșire se poate aplica tensiunii zener de 3V - 3,3V. Această schemă poate fi utilizată pentru a alimenta un LED sau dispozitive de consum redus bazate pe microcontroler, de exemplu, MSP430.
Lista de componente : R1, R3: 1K R2: 2K2 C1: 470pF C2: 100uF / 3,3V C3: 1000uF L1: 470uH VD1: 15MQ040 VT1, VT2: BC547

Read more at https://powersupply33.com/voltage-converter-from-1-5v-to-3v.html

Schema electronica pentru alimentare LED







Vezi și

  1. Schema de tratament pentru cazurile ușoare de Covid-19

  2. Romania traiește , încă ,  din inertia bogățiilor create in Epoca Comunistă

  3. Scara de valori a societății romanești 

  4. Europa privită din viitor

  5. Hrana vie

  6. Planurile in derulare sunt o munca in progres,  veche de sute de ani  

  7. Destinatii uimitoare pe glob

  8. Miracolul japonez- Drum reconstruit în patru zile

  9. Primarul care nu frură

  10. Duda a pus mâna pe Casa Regală

  11. Nu poti multiplica bogatia divizand-o !  

  12. Evolutia Laptop - Cântărea 5,44 kg

  13. O Nouă Republică

  14.    A fi patriot nu e un merit, e o datorie.! 

  15. În vremea monarhiei, taranii romani reprezentau 90% din populatie si nu aveau drept de vot.

  16. Miracolul din Noua Zeelandă - LYPRINOL

  17. Cea mai frumoasă scrisoare de dragoste

  18. Locul unde Cerul se uneste cu Pamantul

  19. Fii propriul tău nutriționist

  20. Maya ramane o civilizatie misterioasa

  21. Slăbești daca esti motivat

  22. Serbet de ciocolata

  23. Set medical Covid necesar acasă

  24. Medicament retras - folosit în diabet

  25. Brexit-ul - Spaima Europei

  26. Virusul Misterios

  27. Inamicul numărul unu al acumulatorilor 

  28. Sistemele solare - apă caldă

  29. Economisirea energiei electrice

  30.  Hoțul de cărți

  31. Aparitia starii de insolventa

  32. TRUMP ESTE PRESEDINTE

  33. Microbii din organismul uman

  34. Despre islamizarea Europei. O publicăm integral.  Și fără comentarii. 

  35. „Naţiunea este mai importantă ca Libertatea !”

  36. Masca ce omoară virusul     O veste de Covid  

  37. Primul an de viaţă - Alocatia pentru copil  

  38. Tavalugul Marelui Razboi - Globaliyarea - Asasinii Economici


Zener Diode Voltages

 

Acest circuit convertește 12 V dintr-o baterie auto în 5 V și oferă o ieșire de curent de până la 500 mA, pentru a alimenta un dispozitiv USB. Dacă se utilizează o diodă Zener de 5,1 V și necesită la 5 mA pentru a menține tensiunea Zener de 5,1 V, calculați valoarea rezistorului de cădere de tensiune R. Utilizați seria E24 pentru a furniza o valoare adecvată a rezistorului.

Deoarece dioda Zener necesită 5 mA, iar proiectul nostru de alimentare USB necesită cel puțin 500 mA pentru a funcționa, atunci curentul total care curge prin rezistorul R trebuie să fie de 505 mA, când închidem comutatorul.

Bateria auto asigură 12 V, iar dioda Zener reglează tensiunea la 5,1 V, prin urmare căderea de tensiune pe rezistorul R trebuie să fie (12 V - 5,1 V), care este 6,9 ​​V.


Deoarece acum avem tensiunea pe rezistorul R și curentul care curge prin el, putem calcula valoarea acestuia folosind Legea lui Ohm unde R = V / I și, prin urmare, rezistența R este dată de 6,9 ​​/ 0,505, care este 13,66 Ω. Prin urmare, alegem 13 Ω din seria E24, deoarece va asigura că curentul Zener nu este mai mic de 5 mA.

Cu comutatorul deschis , tot curentul curge prin rezistor și dioda Zener. Tensiunea pe dioda Zener rămâne la 5,1 V, iar tensiunea pe rezistor rămâne la 6,9 V. Cu un rezistor de 13 Ω, curentul real care curge prin el va fi dat de 6,9 ​​/ 13, care este 0,53 A.

Deoarece comutatorul este deschis, tot curentul (0,53 A) circulă și prin dioda Zener, prin urmare avem toți parametrii necesari pentru a calcula puterea diodei Zener.

P = I × V

P = 0,53 × 5,1

P = 2.703 wați

Prin urmare, pentru această aplicație ar fi necesară o diodă Zener cu o putere nominală adecvată.

Deoarece curentul prin rezistorul R este de 0,53 A, iar tensiunea pe el este de 6,9 ​​V, putem calcula și puterea disipată a rezistorului.

P = I × V

P = 0,53 × 6,9

P = 3.657 wați

Vezi Sursa info AICI

 
Here is a handy zener diode tester which tests zener diodes with breakdown voltages extending up to 120 volts. The main advantage of this circuit is that it works with a voltage as low as 6V DC and consumes less than 8 mA current. The circuit can be fitted in a 9V battery box. Two-third of the box may be used for four 1.5V batteries and the remaining one-third is sufficient for accommodating this circuit. In this circuit a commonly available transformer with 230V AC primary to 9-0-9V, 500mA secondary is used in reverse to achieve higher AC voltage across 230V AC terminals. Transistor T1 (BC547) is configured as an oscillator and driver to obtain required AC voltage across transformer’s 230V AC terminals.

If we connect a diode and resistor in series with a DC voltage source so that the diode is forward-biased, the voltage drop across the diode will remain fairly constant over a wide range of power supply voltages as in Figure (a).
According to the “diode equation” , the current through a forward-biased PN junction is proportional toe raised to the power of the forward voltage drop. Because this is an exponential function, current rises quite rapidly for modest increases in voltage drop. Another way of considering this is to say that voltage dropped across a forward-biased diode changes little for large variations in diode current. In the circuit shown in Figure below (a), diode current is limited by the voltage of the power supply, the series resistor, and the diode's voltage drop, which as we know doesn't vary much from 0.7 volts. If the power supply voltage were to be increased, the resistor's voltage drop would increase almost the same amount, and the diode's voltage drop just a little. Conversely, a decrease in power supply voltage would result in an almost equal decrease in resistor voltage drop, with just a little decrease in diode voltage drop. In a word, we could summarize this behavior by saying that the diode is regulating the voltage drop at approximately 0.7 volts.
Voltage regulation is a useful diode property to exploit. Suppose we were building some kind of circuit which could not tolerate variations in power supply voltage, but needed to be powered by a chemical battery, whose voltage changes over its lifetime. We could form a circuit as shown and connect the circuit requiring steady voltage across the diode, where it would receive an unchanging 0.7 volts.
This would certainly work, but most practical circuits of any kind require a power supply voltage in excess of 0.7 volts to properly function. One way we could increase our voltage regulation point would be to connect multiple diodes in series, so that their individual forward voltage drops of 0.7 volts each would add to create a larger total. For instance, if we had ten diodes in series, the regulated voltage would be ten times 0.7, or 7 volts in Figure below (b).

Forward biased Si reference: (a) single diode, 0.7V, (b) 10-diodes in series 7.0V.
So long as the battery voltage never sagged below 7 volts, there would always be about 7 volts dropped across the ten-diode “stack.”
If larger regulated voltages are required, we could either use more diodes in series (an inelegant option, in my opinion), or try a fundamentally different approach. We know that diode forward voltage is a fairly constant figure under a wide range of conditions, but so is reverse breakdown voltage, and breakdown voltage is typically much, much greater than forward voltage. If we reversed the polarity of the diode in our single-diode regulator circuit and increased the power supply voltage to the point where the diode “broke down” (could no longer withstand the reverse-bias voltage impressed across it), the diode would similarly regulate the voltage at that breakdown point, not allowing it to increase further as in Figure  (a).

(a) Reverse biased Si small-signal diode breaks down at about 100V. (b) Symbol for Zener diode.

Unfortunately, when normal rectifying diodes “break down,” they usually do so destructively. However, it is possible to build a special type of diode that can handle breakdown without failing completely. This type of diode is called a zener diode, and its symbol looks like Figure (b).
When forward-biased, zener diodes behave much the same as standard rectifying diodes: they have a forward voltage drop which follows the “diode equation” and is about 0.7 volts. In reverse-bias mode, they do not conduct until the applied voltage reaches or exceeds the so-called zener voltage, at which point the diode is able to conduct substantial current, and in doing so will try to limit the voltage dropped across it to that zener voltage point. So long as the power dissipated by this reverse current does not exceed the diode's thermal limits, the diode will not be harmed.
Zener diodes are manufactured with zener voltages ranging anywhere from a few volts to hundreds of volts. This zener voltage changes slightly with temperature, and like common carbon-composition resistor values, may be anywhere from 5 percent to 10 percent in error from the manufacturer's specifications. However, this stability and accuracy is generally good enough for the zener diode to be used as a voltage regulator device in common power supply circuit in Figure below.

Zener diode regulator circuit, Zener voltage = 12.6V).
Please take note of the zener diode's orientation in the above circuit: the diode is reverse-biased, and intentionally so. If we had oriented the diode in the “normal” way, so as to be forward-biased, it would only drop 0.7 volts, just like a regular rectifying diode. If we want to exploit this diode's reverse breakdown properties, we must operate it in its reverse-bias mode. So long as the power supply voltage remains above the zener voltage (12.6 volts, in this example), the voltage dropped across the zener diode will remain at approximately 12.6 volts.

Like any semiconductor device, the zener diode is sensitive to temperature. Excessive temperature will destroy a zener diode, and because it both drops voltage and conducts current, it produces its own heat in accordance with Joule's Law (P=IE). Therefore, one must be careful to design the regulator circuit in such a way that the diode's power dissipation rating is not exceeded. Interestingly enough, when zener diodes fail due to excessive power dissipation, they usually fail shorted rather than open. A diode failed in this manner is readily detected: it drops almost zero voltage when biased either way, like a piece of wire.
Let's examine a zener diode regulating circuit mathematically, determining all voltages, currents, and power dissipations. Taking the same form of circuit shown earlier, we'll perform calculations assuming a zener voltage of 12.6 volts, a power supply voltage of 45 volts, and a series resistor value of 1000 Ω (we'll regard the zener voltage to be exactly 12.6 volts so as to avoid having to qualify all figures as “approximate” in Figure (a)
If the zener diode's voltage is 12.6 volts and the power supply's voltage is 45 volts, there will be 32.4 volts dropped across the resistor (45 volts - 12.6 volts = 32.4 volts). 32.4 volts dropped across 1000 Ω gives 32.4 mA of current in the circuit. (Figure  (b))

(a) Zener Voltage regulator with 1000 Ω resistor. (b) Calculation of voltage drops and current.
Power is calculated by multiplying current by voltage (P=IE), so we can calculate power dissipations for both the resistor and the zener diode quite easily:
A zener diode with a power rating of 0.5 watt would be adequate, as would a resistor rated for 1.5 or 2 watts of dissipation.
If excessive power dissipation is detrimental, then why not design the circuit for the least amount of dissipation possible? Why not just size the resistor for a very high value of resistance, thus severely limiting current and keeping power dissipation figures very low? Take this circuit, for example, with a 100 kΩ resistor instead of a 1 kΩ resistor. Note that both the power supply voltage and the diode's zener voltage in Figure are identical to the last example:

Zener regulator with 100 kΩ resistor.
With only 1/100 of the current we had before (324 µA instead of 32.4 mA), both power dissipation figures should be 100 times smaller:
Seems ideal, doesn't it? Less power dissipation means lower operating temperatures for both the diode and the resistor, and also less wasted energy in the system, right? A higher resistance value does reduce power dissipation levels in the circuit, but it unfortunately introduces another problem. Remember that the purpose of a regulator circuit is to provide a stable voltage for another circuit. In other words, we're eventually going to power something with 12.6 volts, and this something will have a current draw of its own. Consider our first regulator circuit, this time with a 500 Ω load connected in parallel with the zener diode in Figure.

Zener regulator with 1000 Ω series resistor and 500 Ω load.
If 12.6 volts is maintained across a 500 Ω load, the load will draw 25.2 mA of current. In order for the 1 kΩ series “dropping” resistor to drop 32.4 volts (reducing the power supply's voltage of 45 volts down to 12.6 across the zener), it still must conduct 32.4 mA of current. This leaves 7.2 mA of current through the zener diode.
Now consider our “power-saving” regulator circuit with the 100 kΩ dropping resistor, delivering power to the same 500 Ω load. What it is supposed to do is maintain 12.6 volts across the load, just like the last circuit. However, as we will see, it cannot accomplish this task. (Figure )

Zener non-regulator with 100 KΩ series resistor with 500 Ω load.>
With the larger value of dropping resistor in place, there will only be about 224 mV of voltage across the 500 Ω load, far less than the expected value of 12.6 volts! Why is this? If we actually had 12.6 volts across the load, it would draw 25.2 mA of current, as before. This load current would have to go through the series dropping resistor as it did before, but with a new (much larger!) dropping resistor in place, the voltage dropped across that resistor with 25.2 mA of current going through it would be 2,520 volts! Since we obviously don't have that much voltage supplied by the battery, this cannot happen.
The situation is easier to comprehend if we temporarily remove the zener diode from the circuit and analyze the behavior of the two resistors alone in Figure .

Non-regulator with Zener removed.
Both the 100 kΩ dropping resistor and the 500 Ω load resistance are in series with each other, giving a total circuit resistance of 100.5 kΩ. With a total voltage of 45 volts and a total resistance of 100.5 kΩ, Ohm's Law (I=E/R) tells us that the current will be 447.76 µA. Figuring voltage drops across both resistors (E=IR), we arrive at 44.776 volts and 224 mV, respectively. If we were to re-install the zener diode at this point, it would “see” 224 mV across it as well, being in parallel with the load resistance. This is far below the zener breakdown voltage of the diode and so it will not “break down” and conduct current. For that matter, at this low voltage the diode wouldn't conduct even if it were forward-biased! Thus, the diode ceases to regulate voltage. At least 12.6 volts must be dropped across to “activate” it.
The analytical technique of removing a zener diode from a circuit and seeing whether or not enough voltage is present to make it conduct is a sound one. Just because a zener diode happens to be connected in a circuit doesn't guarantee that the full zener voltage will always be dropped across it! Remember that zener diodes work by limiting voltage to some maximum level; they cannot make up for a lack of voltage.
In summary, any zener diode regulating circuit will function so long as the load's resistance is equal to or greater than some minimum value. If the load resistance is too low, it will draw too much current, dropping too much voltage across the series dropping resistor, leaving insufficient voltage across the zener diode to make it conduct. When the zener diode stops conducting current, it can no longer regulate voltage, and the load voltage will fall below the regulation point.
Our regulator circuit with the 100 kΩ dropping resistor must be good for some value of load resistance, though. To find this acceptable load resistance value, we can use a table to calculate resistance in the two-resistor series circuit (no diode), inserting the known values of total voltage and dropping resistor resistance, and calculating for an expected load voltage of 12.6 volts:
With 45 volts of total voltage and 12.6 volts across the load, we should have 32.4 volts across Rdropping:
With 32.4 volts across the dropping resistor, and 100 kΩ worth of resistance in it, the current through it will be 324 µA:
Being a series circuit, the current is equal through all components at any given time:
Calculating load resistance is now a simple matter of Ohm's Law (R = E/I), giving us 38.889 kΩ:
Thus, if the load resistance is exactly 38.889 kΩ, there will be 12.6 volts across it, diode or no diode. Any load resistance smaller than 38.889 kΩ will result in a load voltage less than 12.6 volts, diode or no diode. With the diode in place, the load voltage will be regulated to a maximum of 12.6 volts for any load resistancegreater than 38.889 kΩ.
With the original value of 1 kΩ for the dropping resistor, our regulator circuit was able to adequately regulate voltage even for a load resistance as low as 500 Ω. What we see is a tradeoff between power dissipation and acceptable load resistance. The higher-value dropping resistor gave us less power dissipation, at the expense of raising the acceptable minimum load resistance value. If we wish to regulate voltage for low-value load resistances, the circuit must be prepared to handle higher power dissipation.
Zener diodes regulate voltage by acting as complementary loads, drawing more or less current as necessary to ensure a constant voltage drop across the load. This is analogous to regulating the speed of an automobile by braking rather than by varying the throttle position: not only is it wasteful, but the brakes must be built to handle all the engine's power when the driving conditions don't demand it. Despite this fundamental inefficiency of design, zener diode regulator circuits are widely employed due to their sheer simplicity. In high-power applications where the inefficiencies would be unacceptable, other voltage-regulating techniques are applied. But even then, small zener-based circuits are often used to provide a “reference” voltage to drive a more efficient amplifier circuit controlling the main power.
Zener diodes are manufactured in standard voltage ratings listed in Table below. The table “Common zener diode voltages” lists common voltages for 0.3W and 1.3W parts. The wattage corresponds to die and package size, and is the power that the diode may dissipate without damage.


0.5W
2.7V3.0V3.3V3.6V3.9V4.3V4.7V
5.1V5.6V6.2V6.8V7.5V8.2V9.1V
10V11V12V13V15V16V18V
20V24V27V30V
1.3W
4.7V5.1V5.6V6.2V6.8V7.5V8.2V
9.1V10V11V12V13V15V16V
18V20V22V24V27V30V33V
36V39V43V47V51V56V62V
68V75V100V200V

Zener diode clipper: A clipping circuit which clips the peaks of waveform at approximately the zener voltage of the diodes. The circuit of Figure below has two zeners connected series opposing to symmetrically clip a waveform at nearly the Zener voltage. The resistor limits current drawn by the zeners to a safe value.
*SPICE 03445.eps
D1 4 0 diode
D2 4 2 diode
R1 2 1 1.0k
V1 1 0 SIN(0 20 1k)
.model diode d bv=10
.tran 0.001m 2m
.end


The zener breakdown voltage for the diodes is set at 10 V by the diode model parameter “bv=10” in the spice net list in Figure above. This causes the zeners to clip at about 10 V. The back-to-back diodes clip both peaks. For a positive half-cycle, the top zener is reverse biased, breaking down at the zener voltage of 10 V. The lower zener drops approximately 0.7 V since it is forward biased. Thus, a more accurate clipping level is 10+0.7=10.7V. Similar negative half-cycle clipping occurs a -10.7 V. (Figure below) shows the clipping level at a little over ±10 V.

Zener diode clipper: v(1) input is clipped at waveform v(2).

Actionarea la distanta prin Tel Mobil

 SMS control cu Arduino via PC


Proiectul face parte din categoria “Smart-Home” sau “Home-Automation” si va prezinta o solutie simpla si ieftina de a controla la distanta deschiderea/inchiderea usilor casei dvs, aprinderea/stingerea luminilor, in general controlul oricarui fel de dispozitive, la cerere, cu ajutorul telefonului mobiul personal.
Intregul sistem este compus din:
- Un PC
- Un microcontroller (de exemplu Arduino)
- Un telefon mobil cu suport de modem (majoritatea terminalelor actuale corespund)
- O cartela/abonament valabil intr-o retea GSM (pentru a putea primi/trimite mesaje SMS)

Ce să mai citim? 

Virusul Misterios

Europa este o "cum ar fi pe care am moștenit-o"

Măsuri de maximă protecție

Inflația și Veniturile

Sheme Electronice


Mod de functionare
Telefonul mobil se va conecta la PC in modul modem/dial-up si reprezinta sistemul de comanda. La conectarea la calculator, modemului i se va atribui automat – de catre sistemul de operare – a un port serial virtual (COMx) care poate fi folosit pentru initierea conexiunii/ transmiterea de comenzi. Setul de instructiuni acceptate este cunoscut ca set de comenzi AT (compatibil Hayes). .
Softul pentru PC in principiu va ‘asculta’ primirea de SMS-uri cu ajutorul telefonului. Interogarea se poate face in bucla – la intervale de timp (pop),
sau prin crearea unui sistem de evenimente (push). Pentru a testa capabilitatile modemului/telefonului, acesta se poate testa prin crearea unei conexiuni seriale cu ajutorul unui client ce permite acest lucru (de exemplu PuTTY sau HyperTerminal in Windows). De exemplu, trimiterea instructiunii “ATI” pe un device Sony Ericsson k310 va avea ca raspuns un text de identificare a modelului, tipului, reviziei telefonului prin setul de instructiuni AT .


Prin rutarea mesajelor sosite direct catre terminal (AT+CNMI), ele vor putea fi parsate/interpretate direct. Atentie insa ca mesajul nu este in clear-text, ci se prezinta codificat in formatul PDU, si contine, pe langa informatia (textul) util si un header pentru metadate precum centrul de servicii de retea, stampa de timp, expeditor etc. De asemenea, reprezentarea caracterelor se poate face pe 7, 8 sau 16 biti (mesajele SMS clasice sunt de obicei reprezentate pe caractere de 7 biti, mesajele EMS – imagini sau sunete prin SMS – pe 8 biti, iar mesajele cu caractere internationale, pe 16 biti). Mai multe despre formatul PDU.
Scenariul clasic de utilizare a sistemului de control este urmatorul: posesorul/persoana avizata in sistem detine un telefon mobil, pe care compune un mesaj scurt SMS, continand o comanda simpla, pre-stabilita in sistem (de exemplu: “Aprinde lumina”). Mesajul il va trimite catre numarul de telefon asociat cartelei exitente in modemul sistemului. Conectat la PC, telefonul/modemul se asigura de rutarea mesajului catre terminal (sau va fi citit in bucla de catre programul instalat pe PC). In continuare, programul va decodifica mesajul din format PDU in cleartext si va extrage informatia utila, anume textul mesajului si expeditorul. Textul mesajului reprezinta comanda in sine iar de expeditor avem nevoie pentru a permite blocarea blocarea expeditori lor falsi sau fraudulosi. Avand o mica baza de date cu lista de comenzi permise si actiunile asociate, programul va efectua in continuare o cerere catre microcontrollerul conectat.
Sistemul de actiune este reprezentat de un microcontroller (in cazul nostru Arduino), care, pe baza unor comenzi este capabil sa execute anumite actiuni (care se reduc la actionarea LOW/HIGH a anumitor iesiri). Asadar, dupa primirea si interpretarea mesajului SMS, programul instalat pe PC trimite mai departe catre Arduino o anumita cerere (care in memoria microcontrollerului are o anumita semnificatie, in speta actionarea anumitor iesiri). Detalii despre Arduino si modalitati de comunicare seriala cu acesta se gasesc pe pagina sa oficiala.

Controler GSM pentru actionari la distanta

Actionarea si controlul unui sistem aflat la distanta, cu ajutorul telefonului mobil, si fara costuri din creditul abonamentului dvs.
 Un telefon mobil vechi care va fi modificat , relativ usor si cu mare atentie , folosind semnalul /tensiunea care actioneaza motorul vibrator al telefonului mobil .
  • O cartela SIM valida (pe care se pot primi apeluri)
  • Circuitul electronic (driver), prezentat mai jos si ingeniozitatea montajului de comanda , ramane la latitudinea si aprecirea fiecaruia .
mobil
VDD - semnalul de comanda (1,2V), preluat de la vibratorul telefonului
VCC - semnal extern de sarcina (3-6V), care alimenteaza sistemul comandat
J1 - intrerupator virtual de comanda (in cazul de fata, echivalent cu apelarea numarului telefonului utilizat)
U1 - optocuplor (4n35,CNY17,PS2652 sau echivalent), realizeaza izolarea electrica a circuitelor si protejeaza telefonul mobil de tensiuni parazite.
R1 - rezistor 1K
Q1 - tranzistor npn (2N2222 sau echivalent)
D1 - dioda (1N4007 sau echivalenta)
XMM1 - sarcina (motorul sau circuitul ce se doreste actionat).
NOTA:  Pentru obtinerea semnalului de comanda de la telefonul mobil este necesara desfacerea cu grija a carcasei si lipirea a 2 fire pe terminalele vibratorului. Lucrati cu grija pentru a nu deteriora placa de baza a telefonului!


Mai simplu si la indemana oricarui radioelectronist  , te poti conecta de la tensiunea de alimentare al motorasului de vibratii , prin polarizeaza unui tranzistor , in colectorul carui poti pune un releu  la "control "legi plusul de la motorasul de vibratii al telefonului .


Ca tranzistor se poate pune orice NPN de mica putere joasa frecventa. Aici functioneaza ca un comutator; atunci cand primeste un curent prin baza, intra in saturatie, "inchide contactul" colector-emitor, si actioneaza releul.
Pinul de IN s-ar lega la firul de + de la motorasul de telefon. +V se leaga la tensiunea de comanda a montajului . 
Tot montajul trebuie sa aiba masa comuna atat cu masa montajului de actionare cat si cu a telefonului. 
De la releu poti lega ce vrei tu.
 Si daca greseste cineva numarul si suna ? Depinde ce vrei sa comnazi prin actionarea telefonului la receptionarea unui apel .
Pentru a avea controlul comenzii de la distanta , o metoda simpla ar fi ca atunci cand conectezi si deconectezi un circuit electric de actionare , sa pornesti simultan , de ex. un aparat de radio (sau un generator de semnal audio ) care sa-ți dea un indeciu de starea conectarii . Asta inseamna ca v-a trebui ca releul sa comande si tasta de enter a telefonului .
Deci suni odata pt conectare ,  releul actioneaza un circuit basculant bistabil  care v-a porni iluminatul si respectiv aparatul de radio , pe care tu îl vei auzi si deja stii ca dispozitivul tau este pornit/alimentat/conectat .
La urmatorul apel circuitul basculant își schimbă starea si intrerupe iluminatul , dar si aparatul de radio , care iti confirma oprirea alimentarii .

Alta metoda ar fi prin coduri DTMF, dar este destul de complicat. Adica suni la telefon , asta raspunde automat, si un montaj separat interpreteaza ce cod DTMF a fost format. De exemplu, apesi 1, dezarmeaza alarma. Apesi 2, pornesti sistemul de incalzire in locuinta , apesi 3 aprinzi luminile , etc.

Converter 1.5V - 3V

 O schemă simplă de generare a tensiunii invertorului de la 1,5V la 3V poate fi realizată pe baza binecunoscutului multivibrator ușor modifi...